

AQA Biology A-level 5.1 - Photosynthesis

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Where do the light-dependent & light-independent reactions occur in plants?

Where do the light-dependent & light-independent reactions occur in plants?

light-dependent: in the thylakoids of chloroplasts

light-independent: stroma of chloroplasts

Explain the role of light in photoionisation.

Explain the role of light in photoionisation. Chlorophyll molecules absorb energy from photons of light.

This 'excites' 2 electrons (raises them to a higher energy level), causing them to

be released from the chlorophyll.

Name the 2 main stages involved in ATP production in the light-dependent reaction.

Name the 2 main stages involved in ATP production in the light-dependent reaction.

- 1. electron transfer chain
- 2. chemiosmosis

What happens in the electron transfer chain (ETC)?

What happens in the electron transfer chain (ETC)? Electrons released from chlorophyll move down a series of carrier proteins embedded in the thylakoid membrane & undergo a series of redox reactions, which releases energy.

How is a proton concentration gradient established during chemiosmosis?

How is a proton concentration gradient established during chemiosmosis?

Some energy released from the ETC is coupled to the active transport of H⁺ ions (protons) from the stroma into the thylakoid space.

How does chemiosmosis produce ATP in the light-dependent stage?

How does chemiosmosis produce ATP in the light-dependent stage?

H⁺ ions (protons) move down their

- concentration gradient from the thylakoid
- space into the stroma via the channel

protein ATP synthase.

ATP synthase catalyses ADP + Pi \rightarrow ATP.

www.pmt.education

DO PMTEducation

Explain the role of light in photolysis.

Explain the role of light in photolysis.

Light energy splits molecules of water

$2H_2O \rightarrow 4H^+ + 4e^- + O_2$

What happens to the products of the photolysis of water?

What happens to the products of the photolysis of water?

- H⁺ ions: move out of thylakoid space via ATP synthase & are used to reduce the coenzyme NADP.
- e⁻: replace electrons lost from chlorophyll.
- O₂: used for respiration or diffuses out of leaf as waste gas.

How and where is reduced NADP produced in the light-dependent reaction?

How and where is reduced NADP produced in the light-dependent reaction?

- NADP + $2H^+$ + $2e^- \rightarrow$ reduced NADP.
- Catalysed by dehydrogenase

enzymes.

• Stroma of chloroplasts.

Where do the H⁺ ions and electrons used to reduce NADP come from?

Where do the H⁺ ions and electrons used to reduce NADP come from?

- H⁺ ions: photolysis of water
- Electrons: NADP acts as the final

electron acceptor of the electron transfer chain

Name the 3 main stages in the Calvin cycle.

Name the 3 main stages in the Calvin cycle.

- 1. Carbon fixation
- 2. Reduction
- 3. Regeneration

What happens during carbon fixation?

What happens during carbon fixation?

 Reaction between CO₂ & ribulose bisphosphate (RuBP) catalysed by rubisco.

www.pmt.education

 Forms unstable 6C intermediate that breaks down into 2x glycerate 3-phosphate (GP).

DOG PMTEducation

What happens during reduction (in the Calvin cycle)?

What happens during reduction (in the Calvin cycle)?

- 2 x GP are reduced to 2 x triose phosphate (TP)
- Requires 2 x reduced NADP & 2 x ATP
- Forms 2 x NADP & 2 x ADP

How does the light-independent reaction result in the production of useful organic substances?

How does the light-independent reaction result in the production of useful organic substances?

1C leaves the cycle (i.e. some of the TP is converted into useful organic molecules).

What happens during regeneration (in the Calvin cycle)?

What happens during regeneration (in the Calvin cycle)?

• After 1C leaves the cycle, the 5C compound RuP forms

www.pmt.education

 RuBP is regenerated from RuP using 1x ATP

DOfSPMTEducation

• Forms 1x ADP

Outline the sequence of events in the light-independent reaction (Calvin cycle).

Outline the rubisco CO_2 sequence of RuBP 2xGP events in the light-independent **2xreduced NADP** reaction (Calvin 2xATP ATP ADP 2xADP cycle). 2xNADP 2xTP RuP 1C leaves e.g. to form C₆H₁₂O₆ **⊘**∖⊘ www.pmt.education

State the roles of ATP & (reduced) NADP in the light-independent reaction.

State the roles of ATP & (reduced) NADP in the light-independent reaction.

- **ATP**: reduction of GP to TP & provides phosphate group to convert RuP into RuBP.
- (reduced) NADP: coenzyme transports electrons needed for reduction of GP to TP.

State the number of carbon atoms in RuBP, GP & TP.

State the number of carbon atoms in RuBP, GP & TP.

RuBP: 5

GP: 3

TP: 3

Describe the structure of a chloroplast.

Describe the structure of a chloroplast.

- Usually disc-shaped.
- Double membrane (envelope).
- Thylakoids: flattened discs stack to form grana.
- Intergranal lamellae: tubular extensions attach thylakoids in adjacent grana.
- Stroma: fluid-filled matrix.

How does the structure of the chloroplast maximise the rate of the light-dependent reaction?

How does the structure of the chloroplast maximise the rate of the light-dependent reaction?

- ATP synthase channels within granal membrane.
- large surface area of thylakoid membrane for ETC.
- photosystems position chlorophyll to enable maximum absorption of light.

How does the structure of the chloroplast maximise the rate of the light-independent reaction?

How does the structure of the chloroplast maximise the rate of the light-independent reaction?

- Own DNA & ribosomes for synthesis of enzymes e.g. rubisco.
- Concentration of enzymes & substrates in stroma is high.

Define 'limiting factor'.

Define 'limiting factor'.

Factor that determines maximum rate of a reaction, even if other factors change to become more favourable.

Name 4 environmental factors that can limit the rate of photosynthesis.

Name 4 environmental factors that can limit the rate of photosynthesis.

- Light intensity (light-dependent stage).
- CO₂ levels (light-independent stage).
- Temperature (enzyme-controlled steps).

• Mineral/ magnesium levels (maintain

normal functioning of chlorophyll).

www.pmt.education

Outline some common agricultural practices used to overcome the effect of limiting factors in photosynthesis.

Outline some common agricultural practices used to overcome the effect of limiting factors in photosynthesis.

- Artificial light, especially at night.
- Artificial heating.
- Addition of CO₂ to greenhouse

www.pmt.education

atmosphere.

Why do farmers try to overcome the effect of limiting factors?

Why do farmers try to overcome the effect of limiting factors?

- To increase yield.
- Additional cost must be balanced with yield to ensure maximum profit.

Suggest how a student could investigate the effect of a named variable on the rate of photosynthesis.

Suggest how a student could investigate the effect of a named variable on the rate of photosynthesis. dependent variable: rate of O_2 production/ CO_2

consumption

- 1. Use a potometer
- Place balls of calcium alginate containing green algae in hydrogencarbonate indicator (colour change orange → magenta as CO₂ is consumed & pH increases).

State the purpose and principle of paper chromatography.

State the purpose and principle of paper chromatography.

Molecules in a mixture are separated based on their **relative attraction** to the mobile phase (**running solvent**) vs the stationary phase (**chromatography paper**).

Outline a method for extracting photosynthetic pigments.

Outline a method for extracting photosynthetic pigments.

Use a pestle and mortar to grind a leaf with an extraction solvent e.g.

propanone.

Outline how paper chromatography can be used to separate photosynthetic pigments.

Outline how paper chromatography can be used to separate photosynthetic pigments.

- 1. Use a capillary tube to spot pigment extract onto pencil 'start line' (origin) 1 cm above bottom of paper.
- 2. Place chromatography paper in solvent. (origin should be above solvent level).
- 3. Allow solvent to run until it almost touches the other end of the paper. Pigments move different distances.

What are Rf values? How can they be calculated?

What are Rf values? How can they be calculated?

- Ratios that allow comparison of how far molecules have moved in chromatograms.
- Rf value = distance between origin and
 - centre of pigment spot / distance between origin and solvent front.

